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Abstract. An efficient method of calculating weights implementing the Bose-Einstein interference effects is
presented. The usefulness of the method is demonstrated for the events generated by the JETSET/PYTHIA
code to describe the UA1 proton-antiproton data at 630 GeV. A good description of data is achieved with
a reasonable value of the Gaussian width of a two-particle weight factor, which is the only free parameter
in our calculations.

1 Introduction

Recently various methods of imitating the Bose-Einstein
interference effects in Monte Carlo generators have been
discussed [1-3]. This problem became acute with the ad-
vent of new data on WW production, since quite conflict-
ing estimates of the W mass shifts resulting from these
effects have been published [4, 5].

It has been shown that the most commonly used
method of momenta shifting (employed in the new ver-
sions of JETSET [6]) does not reproduce the input shape
of the Bose-Einstein correlation factor, even after improve-
ments of the original procedure [3]. Thus modifying this
shape to fit the data we cannot hope to learn much about
the space-time evolution of the production process.

On the other hand, the method attributing weights to
generated events, much better justified theoretically [7], as
recently discussed in more detail by Bia las and Krzywicki
[8] is not easy to implement. The factorial increase of the
number of terms to be calculated with multiplicity makes
impossible the direct application of the method for high
energies. Only recently Wosiek [9] has indicated a possible
scheme shortening such calculations. Symmetrizing sepa-
rately the particles from each hemisphere, as proposed
by Haywood [1], introduces the unknown bias against the
effect for slow particles (in the CM). In addition, this pro-
cedure does not remove the fundamental difficulties but
only shifts them to higher multiplicities. Another prob-
lem of the weight method is the serious distorsion of the
multiplicity distribution, since weights enhance the high
multiplicity tail [2].

Solution to these problems has been proposed recently
by Jadach and Zalewski [5], who reduce the number of
terms replacing the original Bia las - Krzywicki formula
by an approximation based on the clustering algorithm.
The initial average multiplicity is restored by rescaling
the weights with a simple cV n factor.

Another method of implementing weights, based on
the genuine symmetrization of amplitudes has been sug-
gested a long time ago by Andersson and Hoffman [10] and
recently presented in detail by Andersson and Ringner
[11]. This method, however, is specific to the “JETSET
based” generators. Thus it seems reasonable to discuss fur-
ther the possible realizations of the more general Bia las-
Krzywicki method.

In this note we propose a rapidly convergent approxi-
mation procedure for the Bia las - Krzywicki formula which
avoids prohibitive increase in the computing time with
multiplicity. We present the method in the next section
and then apply it to the description of the UA1 data [10].
The results are encouraging. We regard them as a first
succesful generator – independent and reasonably sound
method for implementing BE effects in the MC generators.

We hope to use the same method to clarify the problem
of the W mass shifts in hadronic decays.

2 Calculating weights for multiparticle states

According to the Bia las - Krzywicki prescription, the sym-
metrization of amplitudes required by the Bose-Einstein
statistics may be approximated by generating unsymme-
trized distributions and correcting them a posteriori by
the multiplicative weights attributed to each event. Such
a weight is a sum over all permutations of identical par-
ticles of the products of two particle weight factors wiP (i)
calculated for the pair of momenta (of i-th particle and the
particle, which occupies the i-th place in the permutation
P{i}).

W (n) =
∑

{P (i)}

n∏

i=1

wiP (i). (1)

Since all factors are positive and wii = 1, the resulting
weight is not smaller than one (a contribution from iden-
tity permutation). One may correct results to keep, e.g.,
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the average number of particles fixed; we return to this
point later.

Since most of the particles detected in experiments are
pions, the final weight should be actually given by a prod-
uct of weights calculated separately for positive, negative
and neutral pions. In fact, the BE interference for neutral
particles is not observable (apart from the possible effects
for hard photons [13]): neutral pions decay before detec-
tion, and for the resulting photons the effective source size
is so big that the BE effects must be negligible for momen-
tum differences above a few eV. However, the procedure
should not change the observable correlations between the
numbers of charged and neutral pions. Therefore weights
for all signs of pions must be taken into account.

Thus in principle the only arbitrary factor is the func-
tion of the difference of two momenta wij(pi − pj). It is
natural to try as a first guess the Gaussian function of
four-momentum difference squared

wij = e(pi−pj)2/2σ2
(2)

which is motivated by a commonly used experimental
parametrization of BE effects.

Of course, different components of momentum differ-
ence squared may be multiplied by different coefficients,
and the shape may be modified. In this note we do not
discuss these possibilities. Therefore the only parameter
is a Gaussian half-width of the distribution σ.

We have tried first to implement this prescription gen-
erating by the JETSET/PYTHIA program [6,14] the sam-
ples of 105 events of pp collisions at 10 and 30 GeV CM
energies. For each event for each permutation the product
of two-particle weight factors (with σ = 0.14 GeV which
corresponds to 1 fm radius of the Fourier transform of the
weight (2)) is computed and all contributions are added to
calculate the weight for the event which is used to produce
distributions (to be compared with those for all weights
equal one).

Unfortunately, for more than ten pions of a given sign
the calculations become prohibitively long. This does not
happen at 10 GeV, but already at 30 GeV there are more
then hundred events with such multiplicities. To get any
results we had to exclude them from standard weight cal-
culations (attributing to each of them the same value of
the weight as obtained for the previously generated event).
This removes, however, the fluctuations which are most
interesting for the investigation of very short range corre-
lations.

Thus here we have separated the sum of all the n! per-
mutations into terms where only the permutations which
change places of exactly K particles are taken into ac-
count:

w =
∑

K

w(K). (3)

The higher terms in this expansion correspond to con-
figurations where many particles have approximately the
same momenta, which is very unlikely. These terms for
K < 6 are

w(0) = 1;

w(1) = 0;

w(2) =
n−1∑

i=1

∑

j>i

(wij)2;

w(3) = 2
n−2∑

i=1

∑

j>i

∑

k>j

wijwjkwki;

w(4) =
n−3∑

i=1

∑

j>i

∑

k>j

∑

l>k

[2wijwikwjlwkl

+2wijwilwjkwkl + 2wikwilwjkwjl

+(wilwjk)2 + (wijwkl)2 + (wikwjl)2];

w(5) = 2
n−4∑

i=1

∑

j>i

∑

k>j

∑

l>k

∑

m>l

[(wij)2wlkwmlwkm

+(wik)2wjlwmlwjm + (wil)2wjkwjmwkm

+(wim)2wjkwklwjl + (wjk)2wilwlmwim

+(wjl)2wikwkmwim + (wjm)2wikwklwil

+(wkl)2wijwjmwim + (wlm)2wijwjkwik

+(wkm)2wijwjlwil + wijwjkwklwlmwim

+wikwjlwkmwjmwil + wilwijwklwjmwkm

+wijwikwjlwlmwkm + wikwimwjkwjlwlm

+wilwjlwjkwkmwim + wijwikwklwlmwjm

+wijwilwlmwjkwkm + wijwimwjlwkmwkl

+wikwilwjkwlmwjm + wikwimwjmwjlwkl

+wilwimwklwjkwjm]. (4)

To check the method we have first compared the results
from the full sum of permutations (1) with the results from
the sum (3) cut at K = 4 at 10 GeV. Both programs give
the same results within a few permille accuracy for all
investigated distributions. Of special interest is the “BE
ratio”, defined for the pair of identical pions as a function
of Q =

√−(p1 − p2)2

c2(Q) =
∫

d3p1d
3p2ρ2(p1, p2)δ[Q − √−(p1 − p2)2]∫

d3p1d3p2ρ1(p1)ρ1(p2)δ[Q − √−(p1 − p2)2]

× < n >2

< n(n − 1) >
. (5)

Without weights it is rather flat and close to one, if we
normalize separately the numerator and the denominator
of (5) to the same number of entries (which is achieved
by the second factor in (5)). Including weights produces a
maximum at smallest Q2 with the height about 2 (i.e. one
unit above the value at large Q2) and a width σ′ about
0.15. Thus we reproduce satisfactorily the shape assumed
for the two-particle weight factor.

At 30 GeV we do not have, as noted above, the re-
sults of full symmetrization; for 174 events of the highest
multiplicity the weights of the previously generated events
were attributed (still, this program requires 10 times more
computing time than the program with no more than 4
momenta symmetrized!). The multiplicity distribution for
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two programs differs slightly in the tail, although aver-
age multiplicities are quite similar: 10% and 11% higher
than without weights. The peak at low Q2 in the ratio of
distributions exceeds slightly 2 and looks similar in both
programs.

After this exercise we started generating events at
630 GeV, the energy of the UA1 experiment. For the cal-
culations of weights we used the same value of σ as before.
We did not have now the possibility to estimate the re-
sults of full symmetrization (the highest multiplicities of
one sign pions exceeded 40 in the 105 events sample). Thus
we have checked first that cutting the series (3) at K = 3
and at K = 4 we get quite similar shapes of the Q2 spec-
tra, although the normalization is significantly different.
Including the term with K = 5 we change even less all the
distributions. Thus we feel that cutting the series (3) at
K = 5 we get a reliable estimate of the results for Q2 spec-
tra from the weight method (up to the possible change of
normalization).

This may seem surprising if we remember that our ap-
proximation does not take into account, e.g., the contribu-
tion from such a simple configuration as three pairs of very
close (pairwise) momenta. Indeed, in this case there is a
contribution from a permutation of 6 elements. However,
the full contribution of such a configuration to the sum
(1) is equal 1+3+3+1 = 8 (from permutations moving 0,
2, 4 and 6 elements, respectively) and our approximation
counts all but the last term in this sum. We have checked
that for all reasonably probable configurations our approx-
imation seems similarly satisfactory.

The distribution of weights at 630 GeV is much
broader than at previous energies and has a long tail (up
to the values of a few hundreds). Consequently, the multi-
plicity distribution is significantly changed by the weight-
ing. Since the JETSET/PYTHIA parameters were fitted
to reproduce inclusive experimental data without weights,
the change, e.g., of the average multiplicity induced by
weights should be compensated by the proper refitting
procedures. Instead we have applied a simple method of
multiplying weights by an extra cV n factor, where n is
the number of pions, and c and V are constants fixed by
the requirements to restore the original number of events
and the original average multiplicity. We return later to
the details of this procedure. Such a rescaling of weights
does not change significantly the shape of Q2 distribu-
tions. The BE ratio reflects mainly the assumed shape of
the two-particle weight (plus 1): for larger σ it is wider
and starts to increase above 2 for smallest Q2.

The procedure seems to produce too high a value of
the BE ratio for smallest Q2. As already noted, it is about
twice the value for small Q2, whereas in most of the data
it is only by some 50% higher. Let us note that we are
using the old version of the UA1 data [10] with rather
arbitrary normalization, and we attempt to describe them
only down to the lower limit of Q2 about 0.01 GeV 2. In
later publications of UA1 [13] the BE ratio is shown to
increase above 2 for lower Q2. Since, however, this increase
is still a subject of controversy and anyway cannot be
described by a Gaussian shape, we do not discuss it here.

To explain why the BE ratio does not increase up to
the value of 2, one may invoke some coherent compo-
nent, but a more obvious effect (which also lowers the
BE ratio) is the existence of longer living resonances. Pi-
ons coming from their decay are effectively “born” more
than 10 fm from the collision point. Thus the Gaussian
width parameter in a two-particle weight for these pions
should by smaller by an order of magnitude, which allows
practically to neglect their contribution to be BE effect
in the experimentally accessible Q2 range. Therefore the
Bia las-Krzywicki weights should be calculated taking into
account only the permutations of momenta of pions pro-
duced directly, or resulting from the decay of the widest
resonances.

This is achieved easily if the procedure calculating
weights is called before the decay of long-living resonances,
i.e. in the same place, where the original LUBOEI proce-
dure was called. We have rewritten correspondingly our
program separating the procedure LWBOEI (called di-
rectly from JETSET, and calculating for each event a
weight as a product of weights for positive, negative and
neutral “direct” pions) from the master program (calcu-
lating distributions with and without weights). This pro-
cedure is available from authors as a FORTRAN file. The
results are now (after rescaling the weights, as desribed
above) quite similar to the data and may be brought to
even better agreement by fitting the only free parameter
- the Gaussian half-width of a two particle weight σ. We
discuss this comparison with data in more detail in the
next section.

3 Results and comparison with data

We have generated 105 events of pp minimum bias colli-
sions at 630 GeV CM energy by the default version of the
PYTHIA/JETSET generator [6,14]. For each event the
weight factor was calculated by taking the 4-momenta of
“direct” pions of each sign, calculating for them a matrix
of two - particle weights wij according to (2) with σ = 0.14
GeV, and then the weight w as a series (3) cut at K = 4
or 5. As already noted, the event weight is a product of
weight factors for all three kinds of pions.

Since the charged pion multiplicity distribution (used
to fit the default values of the parameters with all weights
equal 1) is strongly affected by weights, we rescale the
weight factors to restore the original average multiplicity.
To this end we multiply the weights by a cV n factor, where
n is the number of all “direct” pions of the event, and c
and V are calculated from the comparison of the origi-
nal and weighted multiplicity distribution. This is done
by assuming that the original multiplicity distribution of
“direct” pions may be well approximated by the negative
binomial formula, i.e. that the NBD parameters n and
1/k are given by the experimental values of < n > and
< n(n − 1 > / < n >2 −1. If with the weights we get a
new average multiplicity < n′ >, the original value may
then be restored by rescaling the weights with

V =
< n > (< n′ > +k)
< n′ > (< n > +k)

(6)
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Fig. 1. The “BE ratio” (5) for positive pions as a function of
x = ln2(1GeV 2/Q2). Triangles, crosses and squares correspond
to series (3) cut at K = 0 (no BE effect), 4 and 5, respectively
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Fig. 2. The “double ratio” of ratios (5) for ++ and +- pion
pairs as a function of x = ln2(1GeV 2/Q2). Triangles, crosses
and squares correspond to series (3) cut at K = 0 (no BE
effect), 4 and 5, respectively

and

c =
[1 + (1 − V ) < n′ > /k]k

< w >
, (7)

where < w > is the average value of weights before rescal-
ing. We have checked that this procedure restores indeed
the original average multiplicity with accuracy of few per-
cent. If this accuracy is not satisfactory, the quantities c
and V can be estimated by direct minimization of differ-
ences between the multiplicity distributions without
weights and with the measured weights, respectively. On
the other hand, the BE ratios are little affected by rescal-
ing (only the normalization, which is anyway mainly a
matter of convention, changes by a few percent).

In Fig. 1 we present the “BE ratio” (5) for pairs of
positive pions as a function of x = ln2(1GeV 2/Q2) for
the events from the original PYTHIA/JETSET generator
(without weights) and from our prescription with series
(3) cut at K = 4 and K = 5. In Fig. 2 we show the
“double ratio”, i.e. the ratio of (5) for pairs of positive-
and unlike sign pions for the same events.

We see that without weights both ratios are very close
to one and depend weakly on Q2 (the dip in the double
ratio at x = 2.5, i.e. Q2 = 0.17GeV 2 is the reflection of
K0

s in unlike sign pairs, and the wider dip at lower x comes
from ρ). Our prescription produces a clear increase of both
ratios at low Q2, and the difference between two choices of
Kmax are almost negligible. Thus we believe that cutting
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Fig. 3. The “BE ratio” (5) for positive pions as a function
of x = ln2(1GeV 2/Q2). Crosses represent the UA1 data [10],
triangles and squares correspond to the series (3) cut at K = 5
with σ = 0.14 GeV and σ = 0.1 GeV , respectively
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Fig. 4. The “double ratio” of ratios (5) for ++ and +- pion
pairs as a function of x = ln2(1GeV 2/Q2). Crosses represent
the UA1 data [10], triangles and squares correspond to the
series (3) cut at K = 5 with σ = 0.14 GeV and σ = 0.1 GeV ,
respectively

the series (3) at K = 5 we approximate very well the
results with full formula for the weights (1), which would
require an unreasonably long computation time (even for
supercomputers) when multiplicity exceeds 20.

In Fig. 3 and Fig. 4 we compare our results obtained
for K ≤ 5 and two values of σ (0.14 and 0.1 GeV) with
the UA1 data [12] normalized as in (5).

Let us stress here once more that we use on purpose an
old version of the data, which seemed to be well described
by a Gaussian shape of the ratio (5) for Q2 > 0.01GeV 2

(x < 8) . Possible strong enhancement of this ratio for
lower values of Q2 discussed in more detail in the later
UA1 papers [15], which seems to signal a non-Gaussian
shape, would require a modification of the shape of the
two-particle weight wij . Since here our purpose is merely
to prove the reliability of our method we do not want to
enter this problem. In most of the hadroproduction data
such low values of Q2 are anyway not available and the
data seem to be relatively well fitted by a Gaussian.

We see that the data for the BE ratio up to x = 8
are bracketed by the results for two values of σ, corre-
sponding to the source radius of 1 and 1.4 fm. We do not
attempt to fit σ here more precisely, since our purpose is
only to demonstrate the applicability of the method pre-
sented above.
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4 Conclusions and outlook

We have shown that the weight method of implementing
the Bose-Einstein interference effects in Monte Carlo gen-
erators may be applied effectively to describe the data.
The prohibitive increase of computing time with multi-
plicity is avoided by an approximation, in which only the
selected class of terms (K ≤ Kmax in (3)) out of all n!
contributions is taken into account. We show that already
for Kmax = 4 and Kmax = 5 the results are almost the
same, which suggests that they approximate well those for
the full series.

The change of multiplicity distributions induced by
weights is compensated by simple rescaling, equivalent to
refitting of the original MC parameters. Using the simple
one parameter Gaussian form of two-particle weight fac-
tor we describe reasonably well the UA1 data. Of course,
in the future detailed investigations it is just the shape
of the weight factor which should be fitted to the data,
and we hope to learn from it more about the space-time
evolution of multihadron production processes.

To support the applicability of our method we inves-
tigated other effects of the weighting procedure. In par-
ticular, we checked how the weights change single particle
distributions. The slope of the transverse momentum dis-
tribution increases by a few percent, and the pseudorapid-
ity distribution becomes also slightly narrower. Obviously
the changes are stronger for larger σ, when the weight dis-
tribution is broader. However, all these effects are rather
small and may be easily compensated by small corrections
in the values of free parameters in JETSET.

We have also checked that the effects in BE ratios are
quite similar for the low- and high multiplicity event sam-
ples. The more detailed comparison with data (taking into
account the experimental trigger conditions and cuts) is
now in progress and looks quite promising.

There are many directions in which these results
should be extended. One should check if the weight
method can describe higher order BE effects and semi-
inclusive ratios. The possibility of non-Gaussian and non-
symmetric weight factors should be investigated. Other
hadroproduction processes should be compared with pp

collisions. We hope to learn soon whether our method is
reliable enough to apply it confidently to the estimate of
W mass shifts in the four-jet final states of the e+e− →
W+W− collisions.
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